Икосаэдр

Располагается в Сакральная геометрия в квантовой реальности

Некоторые основные правила этих геометрических форм:

• Каждая грань геометрического тела будет иметь одинаковую форму:

октаэдр, тетраэдр и икосаэдр - равнобедренные треугольники,

◦ куб – квадраты,

◦ додекаэдр – пятиугольники.

• Каждое ребро каждой формы будет одинаковой длины.

• Все внутренние углы каждой формы равны между собой.

И самое важное:

• Каждая форма будет совершенно вписываться в сферу, и все вершины будут касаться сферы, не перекрывая друг друга.

Подобно двумерным случаям, включающим треугольник, квадрат, пятиугольник и шестиугольник внутри окружности, Платоновы Твердые Тела – это представления волновых форм в трех измерениях. Это положение нельзя недооценивать. Каждая вершина Платоновых Твердых Тел касается сферы в месте, где вибрации сводятся на нет, образуя узел. Следовательно, то, что мы видим, - это трехмерное геометрическое изображение вибрации/пульсации.

И студенты Бакминстера Фуллера и его протеже д-р Ганс Дженни придумали умные эксперименты, показавшие, что внутри вибрирующей/пульсирующей сферы будут формироваться Платоновы Твердые Тела. В эксперименте, проведенном студентами Фуллера, сферический воздушный шар помещался в чернила и пульсировал на “чистых” звуковых частотах, известных как диатонические звуковые отношения. На поверхности сферы образовывалось небольшое количество равноудаленных узлов и тонкие линии, соединяющие узлы друг с другом. Если будет четыре равно распределенных узла, вы увидите тетраэдр. Шесть равно распределенных узлов дадут октаэдр. Восемь равно распределенных узлов дадут куб. Двадцать равно распределенных узлов дадут додекаэдр, а двенадцать – икосаэдр. Прямые линии, которые мы видим на этих геометрических объектах, представляют напряжения, создающиеся “кратчайшим расстоянием между двумя точками” для каждого из узлов, поскольку они распределяются по всей поверхности сферы.

Д-р Ганс Дженни: образование Платоновых Твердых Тел в сферической вибрирующей жидкости

Д-р Ганс Дженни провел аналогичный эксперимент (небольшая часть которого приведена на рис 3.2) с каплей воды, содержащей слегка окрашенные частицы, что известно как “коллоидная взвесь”. Когда почти сферическая капля взвеси вибрировала на разных “диатонических” музыкальных частотах, внутри нее появлялись Платоновы Тела, окруженные эллиптическими кривыми линиями, соединяющими узлы. На вышеприведенном рисунке в центральной области четко видны два тетраэдра. Если бы капля была совершенной, а не сплющенной сферой, образования были бы видны еще яснее.

  • Развитие сферы положило постепенное повышение уровней плотности
  • Еще один интересный фактор, заслуживающий внимания: вплоть до максимального расширения, центральный вибратор будет непрерывно вбирать большие количества Э1 и Э2, образуя больше светящейся плазмы и, тем самым, увеличиваясь в физическом
  • Важность цикла времени Фи
  • Дальнейший анализ выявил, что для статических энергетических полей очень важно классическое отношение “фи”, что вновь указывает на явную связь с торсионными полями. Парр обнаружил, что вид “виртуальных” часов начинает отсчитываться
  • Доказательство локальных изменений
  • Одним из предсказаний, которое можно сделать на основе этой модели, является следующее: когда в сферически-волновую систему (такую как наша Солнечная система) вводится энергия более высокой плотности, следует ожидать, что система
  • Допущения квантовой физики
  • Химик Нильс Бор первым предложил “магнетронную” модель атома, описывающую частицы, вращающиеся по орбитам вокруг друг друга как крошечная Солнечная система. Многие люди не знают, что такая модель не может быть